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Feigenvalues for Mandelsets 
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Abstrsel. We discuss generalizations of Feigenbaum's constants a and S to complex 
polynomial maps of degree higher than 2, and present some numerical estimates. Univer- 
sality classes are found to depend an the nature of the critical points of the polynomial. 

1. Introduction 

Since the original discovery by Feigenhaum [l]  of universal features of period doubling 
in one-dimensional maps there has been considerable interest in generalizing these 
concepts [2] as well as experimental observations of the so-called Feigenbaum constants 
or Feigenvalues S and a which characterize the rate of parameter dependent period 
doubling. 

A" Q- ernm-le thn -9s 
-1 a.. C"""y'.L, L..., l.1YY 

X' A - / X I d  A,x,dEW (1)  

has a cascade of birfurcations to 2'-cycles at parameter values Ak,  k = 1,2, . . . , which 
converge exponentially fast to A, at a universal rate 

S ( d ) =  lim ( A k - , - A k ) ( A x - A x + , ) - '  (2) 
*-m 

with the Feigenvalue S( d )  depending on the order d of the critical point x = 0. For 
the generic quadratic map one has S(2) = 4.669 2016. .  . , for the quartic map one has 
6(4) = 7.2847. , . and so forth. 

The d-dependence of S and corresponding universality classes of unimodal maps 
have been studied in some detail L3-121 and it is known, modulo power-law conjugacg 
[6], that Feigenvalues depend solely on the exponent d of the (single) critical point 
of the map. 

I n  higher-dimensional maps the universality question is less well understood. 
Certain classes of constant Jacobian (quadratic) Henon-type maps are known to 
undergo period doubling with Feigenvalues [3,13,14] 

(3) 
(dissipative) 
(area preserving; symmetric reversible). 
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Additionally, it has been claimed [15] on the basis of approximate renormalization 
arguments that Feigenvalues for the generalized Htnon map 

y ' =  bx (4) 
d x '=I -a lx l  - y  

depend on the exponent d, and in particular that S is equal to the one-dimensional 
S ( d )  for all (dissipative) Jbl< 1. This claim has no numerical support and it seems in 
fact, from the available numerical evidence [16], that the Feigenvalues for the map 
(4) are independent of d and take the values given in (3). The possibility of exponent- 
dependent Feigenvalues for constant (non-zero) Jacobian maps thus remains an inter- 
esting open question. 

Complex analytic and area-preserving maps are known to have extended univer- 
sality classes and corresponding Feigenvalues for general n-tupling (where n = 2 
corresponds to period doubling etc). Cvitanovii: and Myrheim [17], for example, 
studied n-tupling of the complex form 

A , Z € C  ( 5 )  . 2 Z ' = A - Z  

of the quadratic map and found Feigenvalues S,,, for n-tupling with winding numbers 
m f n ( m  = 0, . . . , n - 1) corresponding to eigenvalues crossing the unit circle at 
exp(2aim/n).  We denote this situation by n-tupling(m), omitting the m when it is 
clear from the context. 

Here we report on a preliminary study of universality properties of higher degree 
polynomial mappings of the complex plane. 

2. Complex analytic maps 

We begin by considering the elementary polynomial maps of integer degree d: 

I t =  A - zd E Q A , d  ( Z )  A , Z € C  (6) 
which have a unique critical point (where the derivative of the map vanishes) at the 
origin. We are particularly interested in the complex parameter values Ak corresponding 
to superstable n '-cycles (that is, cycles containing the critical point) and the Feigenvalue 

S , / n ( d ) =  k-m Iim (Ak-i-Ax)(Ak-Ak+i)-' (7) 

corresponding to n-tupling(m). 
We now define the Mandelset M ( f ;  c )  to be the subset of the A-plane for which 

the orbit (under an arbitrary complex polynomial f) of the critical point c o f f  is 
bounded. Thus a polynomial has as many Mandelsets as critical points. This generalizes 
the concept of the classical (quadratic) Mandelbrot set. 

This definition should be contrasted to that of the connectivity locus defined in [191 
for cubic maps, where it is a subset of C'. We find this concept too general for our 
present purposes. 

The A sequences above thus lie in the Mandelset. The limit points Am of such 
sequences can also be expected to lie on the boundary of the corresponding Mandelset 
with intermediate parameter values for successive n-tupling located at the points of 
contact of (asymptotically) self-similar components of the Mandelbrot set. As an 
example the Mandelset M ( A  - z4, 0) for the elementary quartic map is shown in figure 
1. Note the threefold rotational symmetry. It is a trivial exercise to show that the 
Mandelset M ( A  - z', 0) has (d - 1)-fold rotational symmetry. 
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Figure 1. The Mandelset M ( A - z ‘ , O )  ofthe elementary quartic polynomial. The integer 
label gives the period of some of the hyperbolic components. 

Some numerical Feigenvalues S,,,(d) and a , / . ( d )  for n-tupling(m) of (6) are 
given in table 1 with S,,,/.(d) defined by ( 7 )  and, for a mapfn with critical point c of 
order d% 

a , / . ( d ) =  h-m lim [ c - ~ ~ ~ ” ( c ) ] [ c - f ~ ~ ~ ~ ” ( c ) ] - ’  (8) 

where fi” denotes fn composed with itself N times and A k  is the parameter value 
corresponding to the superstable II ‘-cycle. 

More complicated polynomial maps with more than one critical point can also be 
studied by !he abnve methnds. For exzmp!e !he map 

z’= A f z4(20z2-482+3O) (9 )  
is easily shown to have two critical points: at z = 0 with d = 4 and at z = 1 with d = 3. 
The computed Feigenvalues 8, , , /” (d) ,  a , / . (4)  are given in table 1. Notice the agreement 
with the elementary d = 3 and d = 4 values. 

Table 1. Feigenvalues CL and S computed directly from equations (7) and (8). Here c is 
the critical point, d its degree and n the tupling value. For n = 2, m = I;  and n =3, m = I 
or 2. 

Function d e n  01 S 

A - * ‘  2 0 2  
0 3  

A - z ’  3 0 2  
0 3  

A - z 4  4 0 2  
0 3  

A - 2  5 0 2  

h+z4(20r*-48z+30) 3 I 2 
3 

4 0 2  
3 

-2.502 
-2.0969- 2.35828i 

-0.2518+ 1.8647i 
- 1.3812 - 2.Ol49i 

-1.6093 
-1.9768-0.6356i 

- 1.157 + l.099i 

-0.252+1.86i 
-1.3812-2.0147i 
-1.69 
- 1.97 - 0.6351 

4.6692 
4.600+8.981i 

3.031 -4.556i 
15.795 + 0.57581 

7.2847 
13.035+ 17.7951 

7.851 -S;?47i 

3.031 -4.4561 
15.795+0.57581 
7.2847 

13.035+ 17.7951 
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Also the Mandelbrot sets for (9) obtained by iterating from = O  and z = 1 appear 
to be asymptotically similar to the Mandelbrot sets obtained by iterating (6) from the 
origin with d = 4  and 3 respectively. Further work is in progress to see if this 
phenomenon is generic. 

3. Universal equations for n-tupling 

The renormalization group method [ l ]  can also be applied to complex maps [17] with 
universality classes of functions corresponding to n-tupling obtained from solutions 
of the functional equation 

where g["] denotes g composed with itself n times and g(0 )  = 1.  For n-tupling(m) 

where a,,,/. is defined by (8) and the corresponding can be computed from g by 
an asymptotic functional iteration process [6] or from a related universal equation 
[lo, 171. 

Solutions of (10) with 

yield Feigenvalues for universality classes of functions having z = O  as a critical point 
with exponent d. Direct substitution of (12) into (10) provides one method of solution. 
An alternative successive approximation method, due to van der Weele ef a1 [lo], 
begins with a zeroth-order approximation of the form g(z) = 1 + g , z d  and yields rapid 
convergence for a in particular. This method exploits the representation of the solution 
g as 

(where f A ( z )  = 1 - A z d ) .  This, together with the relations (for n = 2) 

d o )  = 1 g(1) = a-' g'( 1 )  = a d - '  (14) 

suffices to determine p a, and A, and hence g(z) for period doubling. We have solved 
equations (14) by using a Newton-Raphson iteration in three-dimensional complex 
space to find p, a, and A, in the case n = 2. It was found necessary to use multiple- 
precision arithmetic, principally because a large number of iterations o f f  (n', k 
typically up  to 10) are involved, in which round-off error must be kept under control. 
With intermediate calculations to about 50 decimal places, typically 4 or 5 correct 
decimal places are obtained in the final a. Note the agreement between tables 1 and 2. 

S is more difficult to compute. We used two methods: that of van der Weele et a1 
[lo] and that of McGuire and Thompson [6]. The latter was.usually more rapidly 
convergent. Table 2 gives a synthesis of the two methods, b?sed on our experience of 
the numerical behaviour of these methods. The results: although inaccurate, are 
sufficient to confirm agreement with table 1. 

One interesting feature of this method is that for fixed d 2 4 and n = 2 one obtained 
multiple complex solutions. Some typical results are given in table 2. In this particular 
case it appears that the number of distinct solutions of (10) (with n =2)  of the form 
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Table 2. Feigenvalues ~1 and 6 computed from the functional equation (IO) with n = 2. 
denotes very uncertain quantities. Here d is the order of the critical point of the map 1: 
The last column examines a relation suggested by reference [8]. 

d 

2 

3 

4 

- 

5 

6 

7 

8 

9 

01 

-2.502 907 875 

-0.251 8111.8646951 

-1.690302 
0.605 56 * 1.509 46i 

0.89781 1.1812i 
-1.15681 1.09914i 

-1.4677 
l.OIS10.9536i 

-0.51881 1.4061i 

1.067*0.7941 
-1.1253710.7232i 
-0.06991 1.433% 

-1.35798 
1.09110.677i 
0.23619* 1.36331 

-0.89501 1.0766i 

l.lO210.5897i 
0.4441 1.26681 

-0,54451 1.2416i 
-1.250 * 0.53 14i 

6 (2d- 1)6/(2d-2)ad 

4.669 

3.30374.45i 

7.28 
*2F5.7i 

'1.3 T6.3i 
7.8515.34i 

9.3 
*0.9 T 6.4i 
6.378.4i 

'0.7 T 6.5i 
11.1 T6.0i 
5 . 0 7  10.7i 

11 
'4.7r6.6i 
4.07 12i 

10.08678.98i 

'0.476.6i 
3.0r  1.3i 
8 . 7 ~  1.l9i 

13.5'6.771 

1.118 ' 

I.OI+O.ZSi 

1.06 
'0.97 1 0.14i 

'0.51 1 1.5i 
1.0310.06i 

1.09 

1.07 1 0.06i 

'0.7410.35i 
1.17+0.06i 
1.01310.li 

I .02 
'0.6810.89i 

I .02* 0.08i 
1.0210.04i 

'0.9010.32i 
1 . 0 6 1  0.04i 
1.0410.03i 
1.04+0.01i 

*0.0042+0.056i 

(12)  is the integral part of d / 2 .  It remains however, to determine which of these 
solutions correspond to bona fide n-tupling along continuous paths through the 
appropriate Mandelset. We can confirm for the case d = 4, 5 and 6, that the points Am 
appear graphically to lie on the boundary of the Mandelset. 

Asymptotic forms of feigenvalues for large n [I71 and large d suggested by 
Delbourgo and Kenny [8] and the possible role of conjugacy classes in classifying 
universality classes of functions with multiple critical points are among the many 
problems currently being investigated. In particular, the asymptotic relation 

suggested in [8] for real maps appear to be quite accurate in the complex case even 
for n = 2 (see the last column of table 2). 

Real maps in two or more dimensions pose similar universality questions for 
n-tupling. See also reference [I81 for an extension to non-analytic complex maps. 
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